4) The
$$F_{0}, N(x)$$
 mod function

$$F_{a,N}: \mathbb{Z} \longrightarrow {9 \choose 0,1,2,...,N-1}$$

$$F_{a,N}(x) = {q \choose m od N}$$

$$e.g. \quad a=2, N=15$$

	x	2	F = 2 mod 15	
	1	2	2	
	2	4	4	76)
	3	8	8	12
$r \rightarrow 0$	4	16	1	4 / /
Š	5	32	2	
6	6	6 4	4	4 8
	7	128	8	the period r=4
	8	256	1	
	9	512	2	
	10	1024	4	

i.
$$g(d(24, 36))$$
.

common factors: 2, 3, 4, 6, 12

 $g(d(24, 36)) = 12$

e.g.
$$3b = 1 \cdot 24 + 12$$

$$24 = 2 \cdot 12 + 0$$

$$= \gcd(24, 36)$$

$$= \gcd(12, 24)$$

$$= \gcd(0, 12) = 12$$

e.g. Find
$$gcd(252, 914)$$

$$414 = 1 \cdot 252 + 162$$

$$252 = 1 \cdot 162 + 90$$

$$162 = 1 \cdot 90 + 72$$

$$90 = 1 \cdot 72 + 18$$

$$72 = 4 \cdot 18 + 0$$

$$qcd$$

7] Shar Algorithm

See the ppt slides on Shor's algrithm