Review

Friday, September 30, 2022 4:17 PM

Quiz BI

How many comparisons does the insertion sort need to sort this array? A = [3, 5, 1, 8, 2, 6]

	-	1 1	
l	<u>C1</u>	351826	C A
2.	5	35	1 2
3	1	1 3 5	2 4
4	8	1 3 5 8	1 2
5	2	12358	4 5
6	в	123568	2 3
			10 1/5

How many comparisons does the Button-up Mergesort need to sort this array

 $\mathsf{A} = [\,2,\,4,\,3,\,5,\,6,\,7\,\,]$

243567	C	A
2 4 35 67	3)2
2 3 4 5	3	8
234567	4	12
	10	32

Let $T(n) = 5T(n/6) + n / \log n$.

Apply the master theorem to give an asymptotic bound for T(n) using an appropriate notation (O, Omega, or Theta).

$$R = \log 5 \cong 0.9$$

$$\frac{n}{6} = O(n^{R+2})$$

$$\frac{n}{\log n} = \Omega\left(h^{\kappa+2}\right)$$

$$\Rightarrow$$
 Case :
 $T(n) = A(n/log n)$

$$\frac{\mu_{1}}{g_{2}} = \frac{\mu_{1}}{g_{2}} = \frac{\mu_{1}}{g_{1}} = \frac{\mu_{1}}{g_{2}} = \frac{\mu_{1}}{g$$

 $< (2^{100})$ $N = \left(2^{\frac{7}{2}}\right)^{(2)}$ $\left(2^{700}\right)^{100}$ $\left(2^{700}\right)$ 70000 logh Vs n $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ - \\ 0 \end{pmatrix}$ $N \geq 10$ 100 **1.29.** Use the \prec relation to order the following functions by growth rate: $\underbrace{n^{1/100}}_{\bigcirc}, \sqrt{n}, \underbrace{\log n^{100}}_{\bigcirc}, \underbrace{n \log n}, \underbrace{5}, \underbrace{\log \log n}, \underbrace{\log^2 n}, \underbrace{(\sqrt{n})^n}, \underbrace{(1/2)^n}, \underbrace{2^{n^2}}, n!.$ $(T_{5})^{h} = (n^{k})^{h} = n^{n/2} = n \cdot n \cdot h \cdot (h) \cdot (n^{k})^{h}$ N] = (h^2) h

ange(1, n+1)logn 6 log⁷h Jugn $6 \times \frac{h(h+i)(2h+1)}{2h}$ 210=