Recall: Regular Expressions
RE is a string on Δ

$$
\Delta=\sum \cup\{*,+,(,), \phi\} \text {, such that }
$$

1. \varnothing and $\forall a \in \sum$ are the basic REs.
2. if α is RE, then so is α^{*} (star)
3. if α and β are REs, then so is $\alpha \beta$ (concatenation)
4. if α and β are REs, then so is $\alpha+\beta$ (union)
eng.

$$
\begin{aligned}
& L\left((a b)^{*}\right)=\{\lambda, a b, a b a b, a b a b a b, \ldots\} \\
& L\left(a b^{*}\right)=\{a, a b, a b b, a b b b, \ldots\}
\end{aligned}
$$

2] Precedence rules: $*$, concatenation, union.

$$
L\left(a b^{*}+b\right)=\{a, b, a b, a b b, \ldots\}
$$

3] Notation: in Rule 4, the union operation 't' means "or", alternatively some textbooks use "I", "U"
We will use + by default.

4] Notation: α is a $R E$
$L(\alpha)$ denotes the language represented by α egg.

$$
\begin{array}{ll}
\alpha=a(a+b)^{*} & L(\alpha)=\text { all strings start in a } \\
\beta=\left(a b^{*}\right)^{*} & L(\beta)=a n \text { strings start in a } \\
L(\alpha)=L(\beta) \Longleftrightarrow \alpha \equiv \beta
\end{array}
$$

We can do $\alpha=L(\alpha)=\beta$ if we talk about the languages

Exes:
Language L

Exer:

5] Defn. L is a regular langnage if it has a RE α s.t. $L(\alpha)=L$.
e.g. See above.
e.g. Is $L_{p}=\left\{w \mid w=w^{R}\right\}$ regular?

Lp Not regular.
s.g. $L=\left\{i N \mid w=a^{n} b^{n}\right.$ for $\left.n \geqslant 1\right\} \mid a^{*} b^{*}$
e.g. aaabbb
$a b+a a b b+$
Not regular a aabbb +...

6] Thrm: Regular langnages are closed under union,

$$
\left\lvert\, \begin{aligned}
& L_{1}=l\left(\alpha_{1}\right) \quad L_{2}=\left(\alpha_{2}\right) \\
& \alpha_{1}+\alpha_{2}
\end{aligned}\right.
$$

union, intersection,
complement
concatenation,
and star operations

$$
\begin{aligned}
& L_{1}=l\left(\alpha_{1}\right) \quad L_{2}=\left(\alpha_{2}\right) \\
& \alpha_{1}+\alpha_{2}
\end{aligned}
$$

$$
\begin{gathered}
\alpha_{1} \alpha_{2} \\
\left(\alpha_{1}\right)^{*}
\end{gathered}
$$

7] Them: any finite language is regular?

$$
L=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right\}
$$

