Regular Languages

Tuesday, April 12, 2022 9:37 PM

Recall: Regular Expressions

$$\Delta = \Xi \cup \{*, +, (,), \emptyset\}$$
, such that

3. if
$$\alpha$$
 and β are REs , then so is $\alpha\beta$ (concadenation)
4. if α and β are REs , then so is $\alpha+\beta$ (anion)

$$L((ab)^*) = \{\lambda, ab, abab, ababab, \dots \}$$

$$L(ab^*) = \{a, ab, abb, abb, ---. \}$$

$$L(ab+b) = \{a, b, ab, a6b, \dots \}$$

$$L(x)$$
 denotes the language represented by x

$$\alpha = \alpha(a+b)$$
 $L(\alpha) = all strings start in a$

$$\beta = (ab^*)^* \qquad L(\beta) = all strings start in a$$

$$L(\alpha) = L(\beta) \iff \alpha = \beta$$

We can do
$$\alpha = L(\alpha) = \beta$$
 if we talk about the languages

Exer:

$$\cdot x \in L$$

	Exer:			
	Language L	· x ∈ L	y ∉L	RE «
	O start in 1 end in 0 on 50,17	10, 10010	101	1 (0+1)*0
	@ all strings on {a,63	0a, 666	hone	$(a+b) = (a^*b^*)^*$
	3 { 3 = Ø	hone	ab, a, λ	\varnothing
	9 { 2 }	λ	ав, а	Ø*
	3 &W W has even a	b, aa, aba baaaabb	abt,	$b^*(b^*ab^*ab^*)^*$ = $b^*(ab^*ab^*)^*$
	6 & W W ends in b even b's	and has	abba, A	(a*6a* b) (a* ba* b)
5]	Def". L is a regular language if it has a RE \propto s.t. $L(\propto) = L$.			
	l.g. see above.			
	e.g. $1s$ $Lp = {w w = w^{2}}$ regular?			
	Le Not regular-			
	e.g. $L = \{ w \mid w = a^n b^n \text{ for } n \ge 1 \}$			
	e-g. GA			ab+ aabb+ aaabbb+
	Not regular			u a a o vo i ···
6]	Thrm: Regular languages are closed under			

union,

 $L_1 = L(\alpha_1) \quad L_2 = (\alpha_2)$ $\alpha_1 + \alpha_2$

union,
intersection,
complement
concatenation,
and star operations $(x_1)^*$

7) Thrm: any finite language is regular? $L = \{ w_1, w_2, w_3, ---, w_n \}$