Recall: alphabet star operation

$$
\begin{aligned}
a^{*} & =\{\lambda, a, a a, \cdots-\} \\
\{a, b, c\}^{*} & =\{\lambda, a, b, c, a a, a b, b a, \cdots\}
\end{aligned}
$$

12] The reverse of a strings:
S^{R} is the same string spelled backwards.
egg.

$$
(a b a c)^{2}=c a b a
$$

13] Them. $\forall x, y \in \Sigma^{*}$

$$
(x \cdot y)^{R}=y^{R} \cdot x^{R}
$$

14] Languages:
a language L is a set of strings on Σ

$$
\text { i.e. } L \leq \Sigma^{*}
$$

egg.
on $\sum=\{a, b\}$

$$
\begin{aligned}
& L_{1}=\{a, a a a, a b b a\} \\
& L_{2}=\{a a a\} \\
& L_{3}=a^{*}
\end{aligned}
$$

$L_{4}=\varnothing_{*}$ ir the empty language

$$
L_{s}=\Sigma^{*}
$$

15) Word: the strings in a language are called word

16] The string-function: $W \in \Sigma^{*}$
$w:\{1,2,3, \ldots,|w|\} \rightarrow \Sigma$
$w(i)$ is the $i^{\text {th }}$ symbol in w
char At $[i]$ $=w[i+1]$
e.g. $W=a b b c$,

$$
\begin{aligned}
& w(1)=a \\
& w(2)=w(3)=b \\
& w(4)=c
\end{aligned}
$$

17) The language of palindromes $L_{p}=\left\{w \mid w=w^{R}\right\}$

$$
L_{p}=\{\lambda, a, b, a a, b b, a b a, b a b, a a a, b b b, \ldots\}
$$

18] Note: we can define infinite languages using set notations:
eg. 1. $L=\left\{w \in \Sigma^{*} \mid w\right.$ has some properties $\}$
2. $L=L_{1} \cup L_{2}$
3. $L=L_{1} \cap L_{2}$
4. $L=L_{1}^{*} \quad(\sec [19,20])$

19] Language concatenation $L_{1} \cdot L_{2}=\left\{w \mid w=x \cdot y, x \in L_{1}, y \in L_{2}\right\}$
Notation L^{n} is the set of all strings made of concatenating n strings from L.

20] The closure operation (Kleene star)
L^{*} is the set of all strings obtained by concatenating zero or more strings from L.

$$
\text { e.g. }\{a b, b b\}^{*}=\{\lambda, a b, b b, a b a b, a b b b, b b a b, a b a b a b \text {, }
$$ $a b b b a b, \ldots\}$

21) Notation L^{+}is the set of all strings obtained by
22) Notation L^{+}is the set of all strings obtained by concatenating one or more strings from L.

$$
\text { ie. } L^{+}=L \cdot L^{*}
$$

egg.
$\{a, b b\}^{+}=\{a, a a, b b, a b b, b b a$, aaa, aaa, bbbb, $a a b b, b b a a, a b b a, \ldots\}$
Exes: $\{a, b, b b\}^{*}=\{\lambda, a, b, b b, b a b$,

22] Them for any two languages A and B

$$
\text { if } A \subseteq B \text { then } A^{*} \subseteq B^{*}
$$

egg. $A=\{a, a b, b, b b a\}$ a language on $E=\{a, b\}$ Find A^{*}

Notice $\Sigma=\{a, b\} \subseteq A$
So, $\Sigma^{x} \subseteq A^{*}$ by Them [22]
Since A^{*} is a language on $\Sigma^{*}, A^{*} \subseteq \Sigma^{*}$

$$
\therefore A^{*}=\sum^{*}
$$

8 eg lar xpression
Objective: to have a powerful notation that represent a language.
eg. We in th

$$
\begin{aligned}
& A=\{x \quad x=2 k+1, \text { for some } k \in \mathbb{Z}\} \\
& A=\{x \mid x-1, \text {, or some } k \in \mathbb{Z}\} \\
& \therefore=\left\{x \mid x=2^{k} \quad \text {, for so } k \in \mathbb{Z}\right\}
\end{aligned}
$$

1 Regur Expression (RE) over an alphabet Σ is a string on the alphabet Δ, where

$$
\Delta=\sum U\{*,+,(,), \phi\} \text {, such that }
$$

1. \varnothing and $\forall a \in \Sigma$ are the basic REs.
2. if α is RE, then so is α^{*} (star)
3. if α and β are REs, then so is $\alpha \beta$ (concatenation)
4. if α and β ane REs, then so is $\alpha+\beta$ (union)
5. Note: nothing else is RE, unless it is made of the obuse rules with parantheris.
e.g. Let $\Sigma=\{a, b\}$
by rule (1)
$\alpha_{1}=a$ is a basic RE for the language $\{a\}$

$$
\alpha_{2}=b
$$

$$
\alpha_{3}=\varnothing
$$

"
b

$$
\{6\}
$$

$$
\}
$$

by rule (2)

$$
\begin{array}{ll}
a^{*} & \text { for } L=\{\lambda, a, a a, a a a, \ldots\} \\
b^{*} & \text { for } L=\{\lambda, b, b b, \ldots\} \\
\varnothing^{*} & \text { for } L=\{\lambda\}
\end{array}
$$

by rule (3)
aa for $L=\left\{a a^{*}\right\}$
$(a a)^{*}$ for $L=\{\lambda, a a, a a a a, \ldots\}$
$a^{*} b^{*}$ for $L=\{\lambda, a, b, a a, a b, b b, a a a, \ldots\}$
by rule (4)

$$
\begin{aligned}
& \begin{array}{l}
(a+b)=\{a, b\} \\
(a+b)^{*}=\sum^{*} \\
a(a+b)^{x} b b \text { all sling slat a nd } \\
\text { en end in } 6 b .
\end{array}
\end{aligned}
$$

