Al phabet
Tuesday, April 5, 2022 9:34 PM
Objective: to introduce the topic of the theory of Computation, which is the mathematical study of computing machines and their capabilities.

Lecture Notes on Theory of Computation (LNTC)
81. Alphabet and languages
language \longrightarrow words \longrightarrow Letter, each letter \in Alphabet each word \in Language
egg. English Alphabet (A) $/ / A=\{a, b, \ldots, z\}$
English language (L)
$a, p, l, e \in A$
\longrightarrow make: "apple" $\in L$
\Rightarrow apple is awordin L
\longrightarrow area $\notin L \Rightarrow$ area not aword.

1] An alphabet is a finite set of symbols, denoted by Σ
egg- $\Sigma=\{a, b, c\}$
II has 3 symbols
$\Sigma=\{0,1\}$, $/ 1$ has 2 symbols.
$\Sigma=\{a,<, 3, \#,\{, a, 6\} / 1$ any thing can be a symbol.
$\Sigma=\{1,2,3,4,5,6,7,8,9,10,11,12, \ldots.\} \leftarrow$ not valid.
$\Sigma=\{a\} \quad / /$ valid
$\Sigma=\{ \}=\varnothing \quad / /$ valid, it could be empty;
2] A string on Σ is a finite sequence of symbols from \sum. egg.
egg.
for $\Sigma=\{a, b, c\}$: $a a b b c, a c, c c$ are strings. $\Sigma=\{a\}: a a, a a a a, a$ are strings
3) The length of a string s,

$$
|s|=\text { number of symbols in } s \text {. }
$$

eg

$$
\begin{aligned}
& s=1100 \quad \Longrightarrow \quad|s|=4 \\
& s=a a a \quad \Longrightarrow \quad|s|=3
\end{aligned}
$$

4) The empty string (or null) is a string of length zero

- it is defined on every alphabet.
- denoted by λ

$$
|\lambda|=0
$$

5] Note: any object can be a symbol. However, we use common charareters like $\{0,1\},\{a, b\} \longleftarrow$ our default.

G] Concatenation: of two strings x and y on some Σ is
$x \cdot y$ or simply $x y$ (Juxtaposition)
e.g. $x=a b b, \quad y=a a a$

$$
\begin{aligned}
x \cdot y & =a b b a a a \\
y x & =a a a a b b \\
x x & =a b b a b b \\
x \cdot \lambda & =x \\
\lambda \cdot x & =x
\end{aligned}
$$

7] Notation:

$$
\begin{aligned}
& s^{n}=\frac{s \cdot s \cdot s \cdot \cdots \cdot s}{n-\text { times }} \\
& s^{0}=\lambda
\end{aligned}
$$

$$
\text { Recursively, } S^{n}= \begin{cases}\lambda & \text { if } n=0 \\ S \cdot S^{n-1} & \text { if } n>0\end{cases}
$$

e.g $\quad x=a b b$

$$
\begin{aligned}
x^{4} & =a b b a b b a b b a b b \\
(a a)^{3} & =a a a a \text { aa } \\
a^{3} & =a a a
\end{aligned}
$$

8] In general,
Let A be a set of symbols, then

$$
A^{n}=\{s \mid s \text { is a string on } A
$$ of length n \}

eng.

$$
\begin{aligned}
\{a, b, c\}^{2}= & \left\{\begin{array}{l}
a a, a b, a c, b a, b b, b c, \\
\\
c a, c b, c c\}
\end{array}\right.
\end{aligned}
$$

e.g. \sum^{n} is the set of all strings of length n on Σ.

9] Kleene star operation: let $a \in \Sigma$, then
a^{*} is the set of all strings made of a repeated zero or more time

$$
a^{*}=\left\{s \mid s=a^{n} \quad \text { for all } n \geqslant 0\right\}
$$

$$
=\{\lambda, a, a a, a a a, \ldots\}
$$

10] In general the Hleene star oprator can be applied on any set of symbols A,
$A^{*}\{s \quad s$ is a s ing on -$\}$
e.g (1) Σ^{*} is + sel of U possible string on Σ.
(2) $\left.\{a, c\}^{*}=\lambda, a, c, a a, a c, c a, c c, a a a, \ldots.\right\}$

Exes:

$$
\begin{array}{ll}
a^{*} \cup b^{*}=\{a, b\}^{*} \quad \text { No, for } a b a \in\{a, b\}^{*} \\
a^{*} \cap b^{*}=\varnothing & \text { False, for not in } \lambda \in H S
\end{array}
$$

11] Substrings
string y is a substring of w iff $\exists x, z \in \Sigma^{*}$ s.t.

$$
w=x y z
$$

y is called prefix of w if x is null.
y is called suffix of w if z is null.
e.g. $a a$ is substring of $b a a a b$ for $x=b, z=a b$
$a b$ is suffix of baaab for $x=b a a, z=\lambda$

