	Closures of Relations	
	Wednesday, March 16, 2022 12:43 PM Recall: relation properties	Missing: #12,22,24,26
	Objective: to answer these questions	34.
	is R reflexive? what is missing?	
	3 is R symmetric? What is missing?	
	3 is R transitive? What is missing?	
IJ	e.g. J. let $R = \{(1,2), (1,1), (2,1), (2,1)\}$	302
	(2,3), (2,4), (3,4) }	
	be a relation on $A = \{1,2,7,C1\}$	• 3
	1) is R reflexive? What is missing?	
	No, missing $\Delta = \{ (2,2), (3,3), (4,4) \}$	
	3 is R symmetric? What is missing?	
	N_0 , for $\Delta = \{(3,2), (4,2), (4,3)\}$	
	3 is R transitive? What is missing?	
	No, for $\Delta = \frac{2}{3}(1,4), (1,3), (2,2),\frac{2}{3}$	
2]	,	R with respect
	to property P if:	
	$ \bigcirc R \subseteq S $	
	3 S has property P, and	
	\bigcirc \forall \top , if \top satisfies \bigcirc and \bigcirc then $S\subseteq \top$	
	i.e. S is the p -closure of R if $S = R \cup \Delta$	has property P
	with the smallest &, (gives the smallest.	
^		
3)	J ·	
	D the reflexive-closure of Ris:	

$$S = R \cup \Delta = \{(1,2), (1,1), (2,1), (2,1), (2,7), (2,1), (3,4), (2,2), (3,3), (4,4)\}$$

② the symmetric-closure of Ris:

$$S = RU\Delta = \{(1,2), (1,1), (2,1), (2,1), (2,7), (2,1), (3,4), (3,2), (4,2), (4,3)\}$$

3 the transitive - closure of R is:

$$S = R \cup \Delta = \{(1,2), (1,1), (2,1), (2,1), (2,7), (2,1), (3,4), (1,4), (1,3), (2,2).\}$$

4] Exer:
$$R = \frac{9}{9}(9.6) \mid 9 < 6\frac{3}{9}$$
 on Z

find the reflexive-closure of R .

5.1.

$$S = RU\Delta$$
, where $\Delta = \{(a, a) \mid a \in \mathbb{Z}\}$

R R ?

$$S = \{(a,b) \mid a \leq b \} \text{ on } \mathbb{Z}$$

$$R = \{ (b,a) \mid a R b \}$$

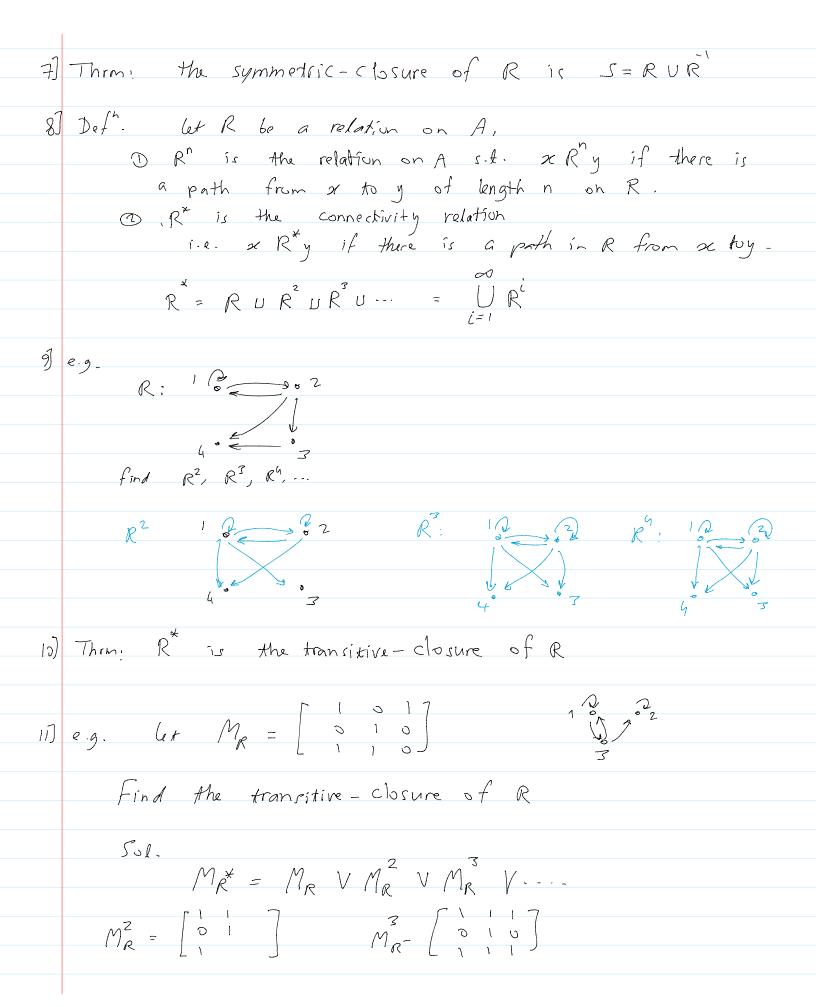
e.g.
$$R = \{(a, b) \mid a < b\}$$

then $R^{-1} = \{(a, b) \mid a > b\}$

6] e.g. Find the symmetric-closure of
$$R = \{(a, b) \mid a < b\}$$

sol.
$$S = R \cup \Delta$$
, where $\Delta = R^{-1}$

$$S = \{(9,6) \mid a \neq b\}$$



· Mp - [o 10] ~ the transitive - chosure of R

03.28

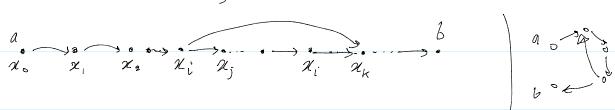
12 To compute the transitive-closure:

Lem a let R be a ration on -,
$$M=n$$
,

There is a pth rom a to b of length $>n$,

then there is path from a be b of length $\leq n$,

if $a \neq b$, the the length $\leq n$.



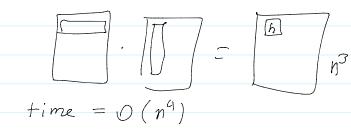
13] Alg L (Matrix Multiplication)

$$A = M_R$$
 $B = A$

For $i = 2$ to n
 $A = A \circ M_R$
 $B = B \lor A$

Return $B \leftarrow M_R^*$

Time complexity



14 Alg 2 (Warshall's Algorithm)

$$W = MR$$

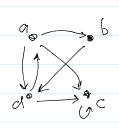
$$for k = 1 to n$$

$$for j = 1 to n$$

$$for j = 1 to n$$

$$M_{R} = W$$

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$



for
$$j = 1$$
 to n
 $W_{ij} = W_{ij} V(W_{ik} \wedge W_{kj})$
 $k = 1 = W_{ij} V(W_{ik} \wedge W_{kj})$

Return $W(x_i) = W_{ij} V(W_{ik} \wedge W_{kj})$

Time complexity:
$$O(n^3)$$

for
$$j = 1$$
 to n
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$

Return $W \quad (\text{or } W_k, \text{ for } k = n)$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad k = 1 = 1$
 $W_{ij} = W_{ij} \quad V \quad (W_{ik} \land W_{kj}) \quad W_{ij} \quad (W_{ik} \land W_{ij}) \quad (W_{ik} \land W_{ij}) \quad W_{ij} \quad (W_{ik} \land W_{ij}) \quad (W_{$

$$W_3 = W_2$$
,
 $W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ - transitive closure