	Kepresenting Kelations Wednesday, March 2, 2022 12:37 PM	
	Recall: Relations properties	Missing:
	· reflexive	# 3,[1,25
	· Symmetric	, ,
	• transitive	
	o anti-symmetric; (χRy) Λ(yR	$n) \longrightarrow \mathcal{X} = y$
	$e.g. \leq on R$	
1]	1-	
	OR is asymmetric if \text{\$\forall \$\cap \chi\$, \$\gamma\$ Ry.}	-> y K 1/L
	e.g < on R	
	@ R is irreflixive: if $\forall x \in A$, $x \not\in X$	
	e.g. Lon R	
2]	Relation operations:	
ر ـــ	Objective: to have notation for expressing complicate.	
	relations in terms of other simple	
	· Executors in it et mis of other simple	
	Note: relations are sets => all set op be applied on relations.	erations can
		-
	e.g. $R, UR_2 = \{(x,y) \mid xR,y \mid xR_2y\}$	
	$R_1 \cap R_2 = \frac{2}{3} (x,y) \mid x R_1 y \wedge x R_2 y^2$	
	$R_1 - R_2 = \{ (x,y) \mid x R_1 y \wedge x R_2 y \}$	
	$R_1 \oplus R_2 = (R, UR_2) - (R_1 \cap R_2)$	
	\overline{R} , = $\frac{2}{3}(x,y)$ $x R$, $y $ for a g	iven universal set
3]	Deft. Composition of two relations Re and	R, is

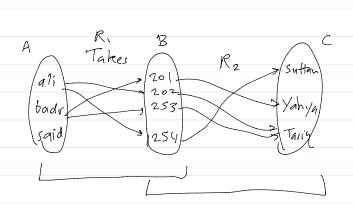
R20R, where R, is from A to B and R2 is from B to C

defined by
$$R_2 \circ R_1(x) = R_2(R_1(x)) \quad \forall x \in A$$

apply R_2 after R_1 on x

e.g.
$$R_1 = Takes$$
 from A to B

$$R_2 = Taught-by ext{ from } B ext{ to } C$$
Then $R_2 ext{ or } R_1 = Student-of$



RzoRi(ali) = {Sultany Taria}

$$R^{n} = \begin{cases} R & \text{if } h = 1 \\ R^{n-1} \circ R & \text{if } n > 1 \end{cases}$$

$$R^{3} = R^{2} \circ R = R \circ R$$

$$R^{3} = R^{2} \circ R = (R \circ R) \circ R$$

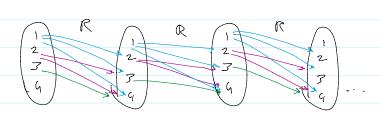
5] Thrm:
$$R$$
 is transitive iff $R^n \subseteq R$

e.g. Let R be a relation on
$$\{1, 2, 3, 4\}$$
 defined by $x R y$ iff $x < y$

$$R^{2} = \{(1,3), (1,3), (2,4)\}$$

$$R^{3} = \{(1,4)\}$$

$$R^{4} = \{(1,4)\}$$



§ 9-3. Representing Relations

$$a_{ij} = \begin{cases} 1 & \text{if } \pi_i R \pi_j \\ 0 & \text{otherwise} \end{cases}$$

$$e.y.$$
 $A = \{1, 2, 3\}$, $B = \{1, 2\}$

$$R = \{(2, 1), (3, 1), (3, 2)\}$$

$$M_{R} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$e-g$$
. \leq on $A = \{1, 2, 3, 4\}$

$$M = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

7) Relation Properties on MR

