Recall: $g<d$
1] Thru:

$$
a \cdot b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)
$$

e.g. if a and are coprime, then $(\operatorname{cm}(a, b)=a \cdot b$

2] Euclidean Algorithm
Them: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
eng. $\operatorname{gcd}(414,248)$

$$
\begin{aligned}
& 414=1 \cdot 248+\frac{166}{1} \cdot 166+82 \\
& 248=\frac{1}{2} \cdot 82+\frac{2}{0} \square \mathrm{gcd} \\
& 166=2+2 \cdot \\
& 82=2 \cdot
\end{aligned}
$$

3] Thru:
(1) $\operatorname{gcd}(a, 0)=a \quad \forall a \in \mathbb{Z}^{+}$
(2) if $\operatorname{gcd}(a, b)=d$, then
(1) $a \mid a$, and $d \mid b$
(ii) $\forall c$, if c / a and c / b, then $c l d$
(3) $\operatorname{gcd}(0,0)=0 \quad$ by deft.

4] Extended Euclidean Algorithm
if $a, b \in \mathbb{Z}^{+}$, then $\exists x, y$ sit. $\operatorname{gcd}(a, b)=x a+y b$
i.e. $\operatorname{gcd}(a, b)$ can be expressed as alinear combination of a and b.

5] e.g. Express the $\operatorname{gcd}(252,198)$ as Linear combination of 252 and 198.

$$
\begin{align*}
& 252=1 \cdot 198+54 \tag{I 1}\\
& 198=3 \cdot 54+36 \\
& 54=1.36+18 \tag{3}\\
& 36=2 \cdot 18+0
\end{align*} Z_{\mathrm{gcd}}
$$

From (3) $18=54-1.36$
From (2)

From (1)

$$
\begin{aligned}
& =54-1(198-3.54) \\
& =-1 \cdot 198+4.54 \\
& =-1.198+4(252-1.198) \\
& =+4.252-5.198
\end{aligned}
$$

$$
\therefore x=4, \quad y=-5
$$

6] Modular Arithmetic
Def $n, a, b, m \in \mathbb{Z}, \quad m>0$
a is congruent to b modulo- m if $m \mid(a-b)$
Notation:
$a \equiv b(\bmod m)$ denotes congruent $a \neq b(\bmod m)$ " not conaruent.
$a \equiv b(\bmod m)$ denotes congruint $a \not \equiv b(\bmod m)$ " not congruent.

7] Thrm: $a \leq 6(\bmod m)$ iff $a \bmod m=6 \operatorname{modm}$ iff $a=b+k-m$ for somek.

8] $1 \cdot 9 \cdot 23=13(\bmod 5)$

$$
-2 \equiv 17 \quad(\bmod 19)
$$

9] Thrm: if $a \equiv b(\bmod m)$
and $c \equiv d \quad(\bmod m)$
then

$$
\begin{aligned}
& a \pm c \equiv b+d \quad(\bmod m) \\
& a \cdot c \equiv b \cdot d \quad(\bmod m)
\end{aligned}
$$

$$
\begin{aligned}
e \cdot g \cdot & 137 \cdot 23 \quad(\bmod 5) \\
\equiv & 2 \cdot 3 \\
\equiv & 6 \\
\equiv & 1 \quad(\bmod 5)
\end{aligned}
$$

$$
\begin{aligned}
\text { e.g. } & 703525 \times 2140 \quad(\bmod 7) \\
\equiv & (700000+3500+21+4)(2100+42-2) \\
\equiv & (4)(-2) \equiv 6(\bmod 7)
\end{aligned}
$$

10) Exer
$(2838 * 34999) \bmod 7$
Sol.
$=3^{*}(-1)=-3=4(\bmod 7)$
