Recall: FTA
1] exer on FTA:
n has exactly 10 divisors.

$$
\begin{aligned}
& 60=2^{2} \cdot 3^{\prime} \cdot 5^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \cdot 2 \cdot 2=12 \text { divisors } \\
& 2^{i} \cdot 3^{j} \cdot 5^{k} / 60 \text { for } i=0,1 \\
& j=0,1 \\
& x=0,1,2
\end{aligned}
$$

Sol.

$$
n=512=2^{9} \quad \Longrightarrow \quad 2^{i} / n \text { for } i=0, \ldots, 9
$$

$$
\begin{array}{ll}
\text { by FTA, } 10=2.5 & \\
\Rightarrow n=P^{i} \cdot q^{j} & i=0, n 1 \\
& \\
& j=0, \ldots, 4
\end{array}
$$

$\Rightarrow 10$ divisors
for $p=2, q=3 \quad p, q$ are small primes

$$
n=2^{1} \cdot 3^{4}=162 \text { has } 10 \text { divisors }
$$

or $n=2^{4} \cdot 3^{\prime}=48$ hos 10 divisors
2) Exec. n has exactly 35 divisors

$$
\begin{gathered}
\text { sol. } n=2^{6} \cdot 3^{4} \\
2^{j} \cdot 3^{i} / n
\end{gathered}
$$

u							
0	1	2	4	8	16	32	64
1	3						
9	18						
2	27	59					
	21						n

3) Exec. n has exactly 18 divisors

$$
\begin{aligned}
& 18=2^{1} \cdot 3^{2} \\
& n=p \cdot q \cdot r^{k}
\end{aligned}
$$

4] Them: There are infinitely many primes.
Proof: assume there are finite prime

$$
P_{1}, P_{2}, \ldots, P_{n}
$$

let $q=p_{1} \cdot p_{2} \cdot \cdots \cdot p_{n}+1$

$$
\Rightarrow \quad b c, p_{i}+q
$$

$\therefore q$ is prime by FTA.

5] Mersenne Primes:
a prime of the form $2^{p}-1$ (for prime p) is called a Messene Prime, otherwise it is a Mersenne composite. egg.

$$
\begin{aligned}
& 2^{2}-1=3 \\
& 2^{3}-1=7 \\
& 2^{5}-1=31
\end{aligned}
$$

$$
\begin{aligned}
2^{5}-1 & =31 \mathrm{~L} \\
2^{7}-1 & =127 \mathrm{~L} \\
2^{11}-1 & =2047 \quad \text { not prime }(23 \times 89)
\end{aligned}
$$

6] Them: Number of Primes
The number of primes $\leq n$ is $\pi(n)$
$\pi(x) \approx \frac{n}{\ln x}$ by Gauss
i.e. $\lim _{n \rightarrow \infty} \frac{\pi(n)}{n / \ln n}=1$

7] Division Algorithm
let $a, b \in \mathbb{Z}^{+}$then there are unique integers q, r such that:

$$
a=q \cdot b+r \quad \text { with } \quad 0 \leqslant r<b
$$

q is the quotient
r is the remainder
e.g. Find q ard r when
(1)

$$
\begin{aligned}
& a=101, b=11 \\
& 1 m 1-9-11+2
\end{aligned} \quad \therefore a-9, r=2
$$

(1)

$$
\begin{aligned}
& a=101, \quad b=11 \\
& \quad \left\lvert\, 01=\frac{9}{8} \cdot 11+\frac{2}{13} \quad \therefore \quad \therefore \quad 13>11\right. \\
& \text { or } \mid 01=8 \cdot 11+r=2
\end{aligned}
$$

(2)

$$
\begin{array}{ll}
a=-11, b=3 & q=-3, \\
-11=-3(3)-2 x & \\
-11=-4(3)+1 & q=-2 \times 6, r=1
\end{array}
$$

8] The Greatest Common Divisor (ged)
Deft. $\operatorname{gcd}(a, b)$ is the largest integer d sit. $d \mid a$ and $d \mid b$
e.g. $\operatorname{gcd}(24,36)=12$

$$
\operatorname{gcd}(17,22)=1
$$

relatively Prime / co-prime
9] How to find the $\operatorname{gcd}(a, b)$
by the FIT.A. Let $a=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$
and $b=p_{1}^{b_{1}} \cdot p_{2}^{b_{2}} \cdot \cdots p_{n}^{b_{n}}$
the $\operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \ldots . p_{n}^{\min \left(a_{n}, b_{n}\right)}$
egg. ged (120,36)

$$
\begin{aligned}
& 120=2^{3} \cdot 3^{1} \cdot 5^{1} \\
& 36=2^{2} \cdot 3^{2} \cdot 5^{0} \\
& \operatorname{gcd}(120,36)=2^{2} \cdot 3^{1} \cdot 5^{0}=12
\end{aligned}
$$

10) The lease Common multiple (1 cm)

Deft. Lcm (a, b) is the smallest positive integer set. $G 1 \mathrm{~m}$ and bim
egg.

$$
\begin{aligned}
& \operatorname{gcd}(24,36)=72 \\
& \operatorname{gcd}(17,22)=17.22
\end{aligned}
$$

11) How to find the $1 \mathrm{~cm}(a, b)$ by the F.T.A. Let $a=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$

$$
\text { and } b=p_{1}^{b_{1}} \cdot p_{2}^{b_{2}} \cdot \cdots p_{n}^{b_{n}}
$$

the $\operatorname{lcm}(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} \ldots p_{n}^{\max \left(a_{n}, b_{n}\right)}$

$$
1 \mathrm{~cm}(a, b) \cdot \operatorname{gcd}(a, b)
$$

